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ON THE CONVERGENCE OF THE FINITE ELEMENT
METHOD FOR PROBLEMS WITH SINGULARITY
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Abstract—For problems with singularities, the convergence rate for the finite element method are often controlled
by the nature of the solution near the points of singularity. Unless the singularities are properly handled, the
regular so-called high-accuracy element will not be able to improve the rate of convergence.

INTRODUCTION

IT 15 well known that in the finite element formulation by assumed displacements when
the compatibility conditions are satisfied and the constant strain approximations can be
accomplished as the size of the elements tends to zero, the convergence of the finite element
solution can be proved [1-6] and the rate of convergence can be established. In determining
the rate of convergence, it has generally been implicitly or explicitly assumed that the
exact solution is analytic or at least sufficiently smooth so that it can be approximated by
a polynomial. If the interpolation function of the finite element formulation is a complete
polynomial of degree p, the error in the approximation of a smooth function is of order
h?*! where h is the size of the elements. Such convergence criterion is, of course, not
applicable when the exact solution contains singularities. In Ref. [7] it has shown that the
convergence rate in energy is of order h?* for a plane elasticity problem with a stress singu-
larity »*~! when rectangular elements with bilinear interpolation functions or constant
strain triangular elements are used. The purpose of the present paper is to show that for
an elasticity problem, in general, the rate of convergence of the finite element solution in
the presence of singularities often controlled by the nature of the singularities. This paper
also establishes the convergence rate of the stress intensity factor in the plane crack
problems.

THE RATE OF CONVERGENCE

To establish the convergence proof, we shall assume that u, is the exact solution of the
problem over a domain A. For simplicity, we shall assume that the solution is sufficiently
smooth except that

u, = r°g(x) (1)

near the point of singularity, say point R in A. In equation (1),  is the radial distance from
R, g is a smooth function, x is the spatial coordinates, « is not an integer and

p+1>a+g>1 2)
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where n is the spatial dimension of the domain A. The following quantities will be defined :

n(u) = U(w)— | Tu,ds (3)
As
1

U) = 5 L Cijutiftun dA4 4
&; = %(“i,j+uj,i) (%)

u =) q.f,(x) (©)

o = . Gnfn(x) (7
u* =Y @i, (x) (8)

where = is the potential energy; U, the strain energy; C;;,, the elastic coefficients (positive
definite), ¢;;, the strain components and f,,, the interpolation functions which have non-
vanishing value only over a finite number of adjacent elements and are chosen that u is at
least a continuous function for arbitrary q,,, the nodal generalized coordinates at the mth
nodes. As an example, in a plane elasticity problem using triangular elements, each with
three nodes, f,, can be simply the pyramid function around nodal m, i.e. f,, is unity at the
mth node, is a linear function within each element adjacent to the mth node and is zero
elsewhere. The vector g, is the generalized coordinates at the mth node and §,, is the
corresponding generalized coordinates of the exact solution u,. For example, if q,, rep-
resents the nodal value of u, then §,, = u, at the mth node. The vector g} represents the
generalized coordinates of the finite element solution obtained by minimization of = with
respect to all q,, subjecting to the constraint that q,, = §,, over the portion of the boundary
where u is prescribed.
It has been shown [1] that

Ulu* —ug) < Ulillp —uy) ©)

and

1

[J (u* —ug)? dAT < co[U(u* —ug))? (10)

where ¢, is twice of the lowest non-zero vibration frequency hence is a positive constant.
It is clear that the rate of convergence of the finite element solution is bounded by the rate
which [U(fl, —u,)]? is approaching zero. If the interpolation functions are so chosen such
that equation (6) can exactly represent any polynomial of pth degree, it can be shown that

|8ij(ﬁ0_“0)| < Cl”aﬁl in 4,

[ (11)
|3i,(ﬁo““o)|sclmt; m A-A,

where A4, 1s the domain covered by the elements adjacent to point R, ¢, is some positive
constants and h is the maximum size of the elements. Using the expression in equations (4)
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and (9), we have
_ dA
r¥*=2 44+ h?r '[A_A rz(”“‘“)}
1 1 (12)

1
2 20—=2+n 2p
< c1c2[c3rmax +eh™ =g

min

Uu*—up) < cic, [J

where ¢, is a positive constant depending on the magnitude of C;j, only, ¢; and ¢, are
positive constants depending on the geometry and the arrangement of the finite element
mesh, r,.,,, and r,;, are, respectively, the maximum and the minimum radial distance from
R to the boundaries of 4. A substitution of equation (12) into equation (10) yields

2 * 2a-2+ cah®? ¥
f (w*—ug)’ dA| < coeie; |earme "+ Sprr=a= | - (13)
A rmax
The contribution of the square of the error from the elements immediately adjacent to the

point of singularity is of order r2%72*" and the contribution from the rest of the domain is

of order A%?/r2f*1-®~" From equation (12), it is clear that the main contributor for the

latter part is from the elements close to the singularity. In practice, ..., 7., and h are of
the same order of magnitude, i.e.

Tmax ~ Tmin ~ h (14)
we can write equations (12) and (13) as
U(u* —u,) < ch> 2+ (15)
|:j(ll"‘—llo)2 dA ]% < Jp~ 1+ (16)
where !
¢ = cics (17)

and c; is a finite positive constant which depends on the value of the elastic constants, the
geometry and the arrangement of the mesh. It is realized that the constant ¢, which is
defined in equation (11) depends on the behavior of u near the point of singularity. From
equations (15) and (16), it is clear that the order of convergence of u is controlled by the
order of the singularity, rather than by the order of the polynomial used for the inter-
polation provided that equation (2) holds.

Consider the problem of plane elasticity with a sharp crack at the crack tip the dis-
placement distribution is

0 36 0 30
y k)t (2x—1) cos 508 k2r)* (2k+3) sin 2+sm >
u, = = + +0(r) (18)
v 8G A 8G 0
(2x+1)sm§—sm—é— —(2x—3)cos§—cos7

where k;, k; are the stress intensity factors and x takes the value 3—4v for plane strain
state and (3—v)/(1 +v) for plane stress state. In this case, we have

n=2
(19)

N

o =
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for any p > 1, equation (2) is satisfied. According to equations {15) and (16), we have

Ulu* —ug) < ch (20)

[J‘ (u* —ug)? dA} < Jch 21)
A

i.e. the convergence in strain energy is only of order h and the convergence in displacements
is of order h*. A finite plate with edge cracks shown in Fig. 1(a) has been investigated
numerically. It should be noted that

Uu* —ug) = Ulug) — U(u*) (22)
in this case.
o
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FiG. 1. Geometry and element subdivision.

The convergence characteristics of the finite element solution of the crack problem by
the assumed stress hybrid model [8] is similar to that of the conventional compatible dis-
placement model. A proof of such characteristics can also be established by using a
procedure similar to that of Ref. 5, except that in establishing the error in strain energy
one has to account for the singularity similar to equation (11). The details of such proof
shall not be given here.
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To verify the above development numerical solutions obtained by two finite element
models are used: (1) compatible displacement model using triangular elements [Figs. 1(b)
and {c}]. In the case of Fig. 1(b}, linear interpolation functions are used for the displace-
ments. If there were no crack, the convergence rate in strain energy would be of order 4%
In the case of Fig. 1(c), complete quadratic interpolation functions (p = 2) are used for the
displacements. If there were no crack, the convergence rate in strain energy would be of
order h*, (2) assumed stress hybrid model using rectangular elements [Fig. 1(d)]. The
quadratic displacements are used along the interelement boundaries and both cases of
complete quadratic and complete cubic equilibrating stresses are used within the elements.
If there were no crack, the convergence rate in strain energy in both cases will also be at
least of order h*.

The numerical results are given in Fig. 2. The convergence rate in strain energy for all
the cases are indeed linear function of / as predicted in equation (20).
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Fic. 2. Convergence in strain energy.

CONVERGENCE OF STRESS INTENSITY FACTOR &k

The stress intensity factor k is related to the strain energy release rate ¢, ie. the rate
of change in the strain energy due to crack extension. For example, for the mode I type
crack in the plane stress and plane strain problems

_dU _ (x+Dn

P =4 T 86

It has been concluded by several investigators [9, 10] that the most accurate finite element
scheme for determining the stress intensity factor is by means of the evaluation of the

k2. (23)
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energy release rate. We shall examine in the following the rate of convergence in stress
mntensity factor.

Let us examine first the constant ¢, i.e. the slope of convergence in strain energy in the
crack analysis by the conventional finite element displacement method. From equations
(11) and (18), it is clear that ¢, is linearly proportional to the stress intensity factor, k; or
ky;. For simplicity, it will be denoted by k. Since for an edge crack in an infinite plate k is
proportional to the square root of the crack length, g, from equation (17} we can write

¢ X cga (24)

where ¢, is a constant. This linear relation is verified by a numerical solution using the
displacement model as shown in Fig. 3.
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Fi1G. 3. Slope of convergence in strain energy vs. crack length.

In practice, let
U*a) = Uw™)

(25)
Ugla) = Uluy)
for a given crack length. Then an approximate stress intensity factor is given by
* _IJ* 3
o+ — U*a+Aa)— U*a) - (26)
[(x+ Dm/8G]Aa

Using equations (22) and (25), we can write equation (20) in the form
UXa) = Uola)+cl@)h+ Oh?). (27
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From equation (26)

i+ = Uola+ Ala)— Uyla) + cla+Aa)—c(a)
| k+D)n/8GlAa ' [(x+ 1)n/8G)Aa

For Aa sufficiently small, we have

+
. (28)

h+ O(hz)]

8¢eG

(k+1n

1 8Ges ,
ke O

k* = [kz + h+ O(hz)]%

(29)
=k

i.e. the rate of convergence in the stress intensity factor determined by energy release rate
is also of order h.

REMARKS

It should also be noted that equations (15) and (16) are also valid for the problems of
through crack in a Kirchhoff-type plate under bending, provided that « in equation (1) is
replaced by a+ 1, and the interpolation f,, are chosen such that not only the displacement
function itself, but its first partial derivatives are also continuous over the entire domain.

It has been shown in equations (15) and (16) that the rate of convergence is independent
of p, the order of the complete polynomial used for the interpolation functions. That is,
under the restriction of equation (2), the use of higher accuracy element (i.e. the use of
higher order of polynomial for interpolation function) cannot improve the rate:of con-
vergence of the finite element solution.

From equation (13), it is clear that the error from the elements immediately adjacent
to the point of singularity is of the same order as that of the rest of the elements. This is
because large error also comes from the row of elements next to those immediately adjacent
to the point of singularity. In order to improve the rate of convergence, one has to include
in the interpolation functions terms which can account for the proper singularity so that
a smaller error in the approximation of the strains (and the stresses) than that given in
equation (11) can be achieved. These special interpolation functions should be used not
only for the elements immediately adjacent to the singular point but also for those in a
finite region around it. For example when the special elements are confined only to the
immediate neighborhood of the crack tip then in the limiting case when the size of these
elements approaches zero the solutian is reduced back to that of the conventional method
for which the singular terms are not included. This point can perhaps explain the fact that
in the various attempts [11, 12] in solving the crack tip stress distribution problem when
the size of the special elements are only 1 or 2 per cent of the crack length there still remain
a few per cent errors in the finite element solution of the stress intensity factors. In the
work by Hilton and Hutchinson [11] the special element is a single circle of radius equal
to the 2 per cent of crack length. This element contains only the correct singular function
in both r and 6. However, in the remaining elements only constant strain triangular ele-
ments are used. In the work by Tracey [12] a ring of triangular elements which contains
1/{/r stress singularity are used at the crack tip. Again for the remaining elements only
bilinear interpolation functions are used.
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It is the opinion of the present authors that a more suitable approach in taking the
singularity into account is to include the special singular function in a finite region which
contains the singular functions correct in both r and 0 variations. Such region must not be
too small in comparison to the crack length.

For example, in Fig. 4 when a region bounded by x = +x, and y = +y,, is defined
where x, and y, are some appropriate lengths. The displacements in this region are then
expressed as

u = u,+u(x*—x9)(y*~y) (30)

FIG. 4. Schematic diagram of the region for the special elements.

where u, is in the form of the first term of equation (18) and u, are nonsingular terms. The
inclusion of u, may be achieved either by the use of higher order interpolation functions or
by further subdividing the region into smaller elements within each of which a simple
interpolation functions are used. The multiplication factor for ug in equation (30) is chosen
to insure the compatibility of u at the boundary of the special region.

In Ref. [13] another method has been developed for evaluating the elastic stress intensity
factors based on a hybrid stress model. In such scheme special eight-node rectangular
elements are formulated which include special stress terms representing the correct singu-
larity behavior at the crack tip in addition to some non-singular stress terms. It has been
demonstrated in one example that the error in the calculated stress intensity factor by this
method is only 0-3 per cent when the special region is within a radius of about //4 of the
crack length around the crack tip. The strain energy for the cracked plate of Fig. 1 has
also been evaluated by this hybrid stress model and plotted for comparison in Fig. 2. It
1s seen that the resulting strain energy already coincides with the exact value when the
element size used is only I/4. It should be noted that the mesh size defined in Fig. 1 is equal
to half of the element size for this case.

The solution by Yamamoto and Tokuda [14] involves a superposition of the classical
solution and the finite element solution hence is, in a sense, a scheme which extends the
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special singular function to the entire region. He was able to obtain stress intensity factors
with less than O-1 per cent error.
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A6cTpakT—/I1s 3a8a4 ¢ CUBTYJISPHOCTAMM, OYEHb YacTO NPUBOAMTCH KOHTPOJb CKOPOCTH CXOAMMOCTH
METONA KOHEYHOTO 3/IEMEHTA, NMyTeM MCCIENOBAaHUA XapakTepa PeLICHHsS BOIM3M TOYECK CHHIYJIAPHOCTH.
JIns He TOYHO OBpallleHHBIX CHHTYIAPHOCTEH, PEryNspHBIH 3JEMEHT, O TaK Ha3biBaemoii Gonbiuoi ToY-
HOCTH, HE MOXET NOBBLIMIATh CKOPOCTH CXOAMMOCTH.



